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W
hat exactly is a fractal? 

Traditionally, students learn 
about the familiar forms of sym-
metry: reflection, translation, and 
rotation. Intuitively, fractals are 

symmetric with respect to magnification. A magnifi-
cation of a small part of the fractal looks essentially 
the same as the entire picture. More formally, frac-
tals have the property of self-similarity—that is, a 
fractal is any shape that is made up of smaller copies 
of itself. Self-similarity is what distinguishes frac-
tals from most conventional Euclidean figures and 
makes them appealing. Do fractals hold the same 
characteristics as other Euclidean objects? Fractals 
offer much to explore for even very young students. 

In the past, we have taught fractal geometry to 
students of various ages and abilities, introduc-
ing the idea of self-similarity to kindergarten and 
middle school children through workshops tailored 
to each of these age groups. Further, we have led 
in-depth investigations with nonmajors in liberal 
arts courses and have gone into even more detail 
with mathematics majors in upper-level geometry 
courses. Fractal geometry offers teachers great flex-
ibility: It can be adapted to the level of the audience 
or to time constraints. Although easily explained, 
fractal geometry leads to rich and interesting math-
ematical complexities. 

Michael Fraboni and Trisha Moller
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At the beginning of our workshops, we share with 
students the two reasons we love geometry—because 
it is so old and because it is so new. Euclid’s work has 
endured for more than two thousand years. Fractal 
geometry, in contrast, is a relatively new area of 
mathematics, first formalized in the 1960s, and many 
mathematicians today work in this field. Because 
fractals are so recent and different, using them to 
present even old ideas can breathe new life into a 

classroom. Traditional top-
ics such as measurement 
can seem fresh and exciting 
when applied to fractals. 
Fractal geometry gives stu-
dents a new perspective on 
their mathematical under-
standing and encourages 
creativity in their problem 
solving.

Another motivation for 
studying fractal geometry 
comes from observation 
of natural phenomena. 
Most human-made struc-
tures are Euclidean; they 
have nice straight lines 
or smooth curves. Nature 

does not follow the same rules. Natural objects have 
many crevices, wiggles, and jagged edges—all frac-
tal characteristics. The details of nature cannot be 
measured truly by using only Euclidean tools. For 
instance, if you measured the outline of a tree, a 
cloud, or a coastline by using a Euclidean (straight) 
ruler, you would obtain different measurements 
depending on the ruler’s scale. The question is not 
“What did you do wrong?” but rather “Did you use 
the wrong tool?” Marking off the outline by using a 
stick that is one foot long will give a result different 
from that obtained by using a stick that is one inch 
long. The smaller stick captures more of the object’s 
detail. Thus, in many ways, fractal geometry is a 
better tool for modeling nature.

AN APPLICATION
The main tool for creating a fractal is iteration: One 
applies a process, takes the result, and continues 

Most human-made 
structures are  

Euclidean; they  
have nice straight 

lines or smooth 
curves. Nature does 

not follow the  
same rules

to reapply the process to obtain a mathematical 
object with striking characteristics. Suppose one 
starts with a filled-in equilateral triangle. Connect 
the midpoints of the three sides and remove the 
small inverted triangle just created. Three smaller 
filled-in equilateral triangles are left. Now, iter-
ate this process—that is, apply it to each of the 
smaller triangles. Repeat the iteration with the nine 
smaller triangles that result and then again with the 
twenty-seven still smaller ones. The limiting shape 
of this process, the shape that results from infinite 
repetition, is a fractal known as the Sierpinski tri-
angle (see figs. 1a–d). Note the self-similarity that 
results: The shape is made of scaled copies of itself.

Constructing fractals by using iteration can 
appeal to a wide range of students and can be intro-
duced in a short time. The students are required 
only to master a relatively simple process (e.g., 
connecting midpoints and removing a triangle), but 
when they apply this with a little patience they are 
rewarded with a very intricate picture.

Once students have constructed a fractal such as 
the Sierpinski triangle, the teacher can ask several 
questions about it. For instance, what is the trian-
gle’s area? This question can be answered in vari-
ous ways depending on the level of the class. First, 
have students assume that the area of the original 
triangle is 1. Then have them make a table listing 
the total area of the figure at each stage in the con-
struction (see table 1). 

As students compare the areas at each stage, they 
should notice that a pattern emerges. The decimals 
indicate that the areas form a sequence that decreases 
to zero. The fractions indicate the pattern of powers 
showing that the area tends to zero. In precalculus 
classes, students can follow the pattern to its logical 
conclusion. In calculus classes, this example lends 
itself well to an application of the limit process. With 
further thought, most students can find an explana-
tion for why the pattern must hold.

Students could compute the remaining area in 
the figure by considering how much of the original 
area is removed in the construction process. In the 
first stage, 1/4 was removed; in the second stage, 
3(1/4)2 was removed; and so on. In the nth stage, 
3n–1(1/4)n was removed. Now, to find the total area 

Fig. 1  The Sierpinski triangle can be constructed by connecting the midpoints of each side of a filled-in triangle and 

removing the resulting down-pointing triangle. The process can be iterated.

(a) (b) (c) (d)
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removed, simply add all these fractions. In other 
words, evaluate the infinite sum
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This example of a geometric series demonstrates 
that the Sierpinski triangle has zero area.

In either case, the answer seems suprising at first. 
If the Sierpinski triangle is an object with zero area, 
does that mean all its points have been removed 
and nothing remains? But certainly the edges of the 
original triangle are never removed. After all, only 
the middle triangles have been removed. By the 
same logic, the edges of the stage-one triangles must 
remain in the fractal. This leads to another question: 
What is the perimeter of the Sierpinski triangle? 
This question too can be answered by setting up a 
table for patterns, applying logic to explain the pat-
terns, and using a variety of tools.

CONCLUSION
In this article, we have described fractal geometry 
and provided a sample exercise. However, the Sier-
pinski triangle is by no means the only fractal that 
is useful in the classroom; many more fractals and 
their applications can be constructed. Some are as 
easy to form as the Sierpinski triangle, while others 
can be as complicated as the Mandelbrot set, which 
is constructed by iterating a function on the com-
plex plane. Through fractal geometry, students will 
investigate a range of topics, including sequences, 
symmetry, ratio and proportion, measurement, 
and fractions. At a higher level, tools such as 
logarithms, the composition of functions, Pascal’s 
triangle, arithmetic in different bases, and complex 
numbers can be applied.

Fractal activities can be found that address most 
NCTM Standards. Thus, fractals can be taught sepa-
rately or incorporated as examples into traditional 
lessons. For additional ideas and detailed lesson 
plans, refer to the Tool Kit of Dynamics Activities 
collection published by Key Curriculum Press (see 
Choate and Devaney listings) and the electronic 
book Fractal Geometry (Frame, Mandelbrot, and 
Neger 2006). We hope you will consider fractal 
geometry as a resource that reinforces the concepts 
in your current curriculum and introduces your stu-
dents to a new and beautiful field of mathematics.
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Table 1

Areas of Successive Stages in the Sierpinski Triangle  
(the area of the original triangle is assumed to be 1)
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