Finding Patterns in the Sierpinski Tetrahedron

n	•••	3	2	1	0	Stage
						Number of tetrahedra
						Length of one edge
						Total length of edges
						Area of one face
	•••					Total Surface Area
						Volume of one tetrahedron
						Total volume

Answer Keys for The Sierpinski Triangle Unit 4

Finding Patterns in the Sierpinski Tetrahedron Answer Key

n	•••	3	2	1	0	Stage
4"	•••	64	16	4	1	Number of tetrahedra
$\left(\frac{1}{2}\right)^n e$	•••	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)e$	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)e$	$\frac{1}{2}e$	Э	Length of one edge
$4^n \cdot 6 \cdot \left(\frac{1}{2}\right)^n e = 6 \cdot 2^n$	•••	$64 \cdot 6 \cdot \frac{1}{8}e$	$16 \cdot 6 \cdot \frac{1}{4}e$	$4 \cdot 6 \cdot \frac{1}{2}e$	6e	Total length of edges
$\left(\frac{1}{4}\right)^n A$		$\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)A = 64 \cdot 4 \cdot \frac{1}{64}$	$\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)A$	$\frac{1}{4}A$	A	Area of one face
$4^n \cdot 4 \cdot \frac{1}{4^n} A = 4A$	•••	$64 \cdot 4 \cdot \frac{1}{64} \cdot A = 4A$	$16 \cdot 4 \cdot \frac{1}{16} \cdot A = 4A$	$4 \cdot 4 \cdot \frac{1}{4} \cdot A = 4A$	4A	Total Surface Area
$\left(\frac{1}{8}\right)^n V$	•••	$\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)V$	$\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)V$	$\frac{1}{8}V$	A	Volume of one tetrahedron
$4^n \cdot \left(\frac{1}{8}\right)^n V = \left(\frac{1}{2}\right)^n V$		$64 \cdot \left(\frac{1}{8}\right)^3 V$	$16 \cdot \left(\frac{1}{8}\right)^2 V$	$4 \cdot \left(\frac{1}{8}\right) V$	V	Total volume